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Abstract-Evaporation and condensation of a continuum regime binary droplet accompanied by internal 
diffusion are investigated numerically. The evaluation of the mole fractions at the droplet surface is based 
on the model where a thin, well-stirred liquid film resulting from evaporation and condensation is allowed 
to mix with the droplet by diffusion in short time intervals. The effect of the internal diffusion on the 
evaporation rate of an ammonia droplet in the presence of condensing water vapour is examined. In 
particular. the evolution of the droplet temperature and the vapour pressure of ammonia just above the 
droplet surface is investigated. The influence of the significant surface dilution of ammonia on the 
evaporation rate is reduced because of the increased droplet temperature which results from the decreased 

evaporation rate. 

INTRODUCTION 

THE UNDERSTANDING of condensational growth and 
evaporation of particles is essential in many atmo- 
spheric and environmental studies and in many 
branches of technological applications, such as in 
chemical engineering. Generally, these processes 
depend on the capability of the gas phase to transfer 
vapour molecules, and this mass transfer is coupled 
by heat transfer resulting from the heat released in 
condensation and consumed in evaporation. The out- 
ward mass and heat fluxes depend on the boundary 
values (vapour pressure and temperature) far from 
the droplet surface and just above it. The former are 
determined by external conditions, the latter are 
governed by internal transfer processes, which are 
coupled with outward transfer processes. In order to 
estimate the evaporation or growth rate of a droplet, 
the effect of the intrinsic transfer processes on bound- 
ary values should be investigated. 

The problem of multicomponent (two or more com- 
ponents) droplet evaporation and condensation is 
substantially more complicated than the problem of 
one component droplet, for several phenomena must 
be taken into account (e.g. ref. [I]). This study is 
devoted to the significance of the internal diffusion in 
binary (two-component) droplet evaporation in the 
continuum regime (macroscopic transfer processes). 
No internal convective flow is allowed for. The tem- 
perature within the droplet is taken to be spatially 
uniform, but temporally varying ignoring the effect of 
the droplet thermal capacity. For other investigations 
on mass and heat transport within multicomponent 
evaporating droplet, the reader may wish to refer to, 
e.g. refs. [2-4]. 

Numerical results for an ammonia droplet evapor- 

ating in the humid air at 2O’~C are presented in this 
study. As the temperature of the evaporating droplet 
is low, the evaporation is accompanied by the sim- 
ultaneous condensation of water vapour at the droplet 
surface (the possible nucleation of water vapour 
owing to the low temperature gas around the droplet 
is neglected). In the conditions considered here, the 
evaporation and condensation proceed at a relatively 
fast rate and thus the ammonia-water droplet might 
display a sensitivity to the internal diffusion. The 
evolution of ammonia droplets in the dry air and 
in the humid air without internal diffusion (well- 
mixed behaviour) has been considered in refs. [.5,6], 
respectively. 

THEORY 

Gas-phase massjiuxes and droplet temperature 
In order to calculate droplet evaporation, it is 

necessary to determine the gas-phase mass fluxes (the 
rates at which masses of species pass from or to the 
droplet surface), and the actual droplet temperature. 
The objective of this section is only to present some 
general aspects of the theory by which the mass fluxes 
and the droplet temperature are estimated. For more 
detailed description (expressions for mass fluxes and 
for droplet temperature ; physico-chemical properties 
required for the model computations) the reader may 
wish to refer to ref. [6] (see also refs. [7,8]). 

Since the vapour diffusion and heat conduction in 
the gas proceed on a much faster time scale than 
growth or evaporation, the vapour concentrations 
and the temperature profiles near the droplet 
approach steady state before appreciable growth or 
evaporation occurs, and the gas-phase mass and heat 
fluxes can be considered as quasi-steady. Changes in 
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NOMENCLATURE 

a droplet radius I time 
C mass concentration u dimensionless variable, definitions (A4) 
cs mass concentration in well-stirred liquid I/ Laplace transformed dimensionless 

film (Fig. 1) variable u 
CV initial value of C, 4 dimensionless mass concentration 
D, liquid phase diffusion coefficient V,, V, volume of well-stirred liquid film (Fig. I) 
d relative integration step X mole fraction. 
.L,fO parameters in expression (6) for mass 

concentration 
I gas-phase mass flux 

Greek symbols 

ml mass in the droplet 4, a ratio of film volume to droplet volume 

M total mass of solute (Fig. I) 

w molecular weight of species i P density 

P variable used in the Laplace transform 
T dimensionless time 

mass fraction. I radial distance X 

R dimensionless distance 
s variable used in the Laplace transform, Subscripts 

-S23P i integration step 
s,, n th positive non-zero root of equation I species 

(4) 2 species. 

these processes are determined by the changing 
boundary conditions. The validity of this statement 
has been investigated by numerous authors (e.g. 
ref. [9]). 

Mass transfer results from ordinary molecular 
diffusion if there is no gradient in the total pressure 
and no external forces, and if thermal diffusion can 
be neglected (e.g. ref. [IO]). The steady-state mole 
fraction gradient of a species due to ordinary diffu- 
sion, for a multicomponent ideal vapour mixture, is 
given by the well-known Stefan-Maxwell equations 
[l I]. Kalkkinen et al. [7] have solved the differential 
Stefan-Maxwell equations analytically for a binary 
droplet evaporating in the presence of an inert gas. 
The solution produces non-linear algebraic equations 
for the constant mass fluxes, which can be solved 
numerically, if the droplet temperature and the mole 
fractions at the droplet surface are known. In this 
study, the expression presented by Kalkkinen el al. 
[7] are applied according to ref. [6]. 

An equation for the steady state droplet tem- 
perature can be derived using the energy conser- 
vation : the temperature (or the evaporation and 
condensation rates) levels off at a value where the 
phase transition heats can be transferred in the gas. 
The heats are transported by thermal conduction 
according to the Fourier’s law, by diffusion as a result 
of the enthalpies carried by vapours, and by thermal 
radiation (e.g. ref. [12]). The direct effect of the con- 
centration gradients (the Dufour effect) is usually of 
minor importance, and it is not taken into account 
here. Kulmala and Vesala [8] have derived an 
expression for the temperature of the one-component 
droplet, assuming that the thermal conductivity of the 
surrounding gas and the vapour enthalpy vary linearly 

with the temperature. In this study, the generalized 
multicomponent expression based on the former one 
is applied according to ref. [6] (see also ref. [I 31). The 
expression includes also the corrections caused by the 
radiative heat transport in a transparent gas and by 
the excess mixing enthalpies resulting from non-ideal 
behaviour of the liquid mixture. 

Internal concentration profile 
The effect of relatively small liquid phase diffu- 

sivities causes the surface composition to differ from 
the bulk, less volatile species (if both species evapor- 
ate), condensing species (if the other species evapor- 
ates and another condenses) or species with higher 
condensation rate (if both species condense) tending 
to accumulate on the droplet surface. We approximate 
for convenience that this accumulation takes place in 
a well-stirred liquid solution at the droplet surface 
and consider diffusion from this well-mixed liquid 
solution into the droplet. In this stage, the well-stirred 
solution is restricted only to have limited volume. 
In the actual numerical model the solution volume 
is required to be small compared with the droplet 
volume. 

Suppose that the droplet occupies the space r i a, 
while the volume of the well-stirred solution (exclud- 
ing the space occupied by the droplet) is V,. The 
concentration C, of solute (accumulating species) in 
the solution is uniform. The solution and the droplet 
are assumed to be in the equilibrium. A schematic 
diagram of the system is presented in Fig. I. 

The concentration Cat a distance r from the centre 
of the droplet is determined by the well-known 
unsteady diffusion equation in a spherically symmetric 
geometry 
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well-stirred liquid film 

FIG. 1. Schematic diagram of the system. A well-stirred liquid 
film is mixed with the droplet by diKusion. 

arc a%c ---CD- 
at tar2, r<a 

c= c,, r=a (1) 
where D, is the liquid phase diffusion coefficient which 
is assumed to be constant as are the temperature and 
thermodynamic properties. Actually, the diffusion 
coefficient is a function of the concentration and thus 
also of the radial distance. For liquid mixtures, the 
binary diffusion coefficients are strongly concen- 
tration dependent (e.g. ref. [14]). However, there are 
relatively few experimental data of diffusion co- 
efficient in liquids since measurements are tedious, 
and molecular theory does not succeed in describ- 
ing the complicated processes in non-ideal liquid 
solutions with sufficient accuracy for predicting co- 
efficients (e.g. ref. [15]). The concentration depen- 
dence is neglected here. If the mole fraction depen- 
dence is available, the approximate dependence can 
be included in calculations later. Note that equation 
(1) is written in the form which resembles the diffusion 
equation in one dimension. 

First, let the initial concentration of the solute in 
the droplet be zero and in the well-mixed solution be 
C” 

c = 0, t=O, r<a 

c,=c,, f=O. (2) 
The behaviour of the system is similar to the con- 

ductive heating or cooling of a solid sphere in a well- 
stirred fluid investigated by Paterson [16] and the con- 
centration of solute within the droplet is given by 
[16,171 

MO 
’ = (4na .‘/3 + V,) 

where MO is the total mass of solute and s,, is the nth 
positive non-zero root of 

The parameter tl is the ratio of the volume of the 
solution and the droplet 

vo 
u=z2p 

The first three roots of equation (4) are presented by 
Paterson [ 161 for a wide range of GI. 

Now, the solution for the concentration profile 
introduced above is used as the initial concentration 
in a generalized case. Note that the solution for the 
concentration would be similar to equation (3) in 
respect to the dependence on the radial distance, 
although the initial concentration in the droplet would 
have been non-zero constant in equation (2). Thus, 
the generalized case describes the evolution of the 
intrinsic concentration profile for the droplet, which 
is initially composed of one species, or well-mixed (or 
its initial concentration profile depends on the radial 
distance according to equation (3)) (see the next 
section). 

Consider the solution of the diffusion equation (1) 
when the initial concentration is given by 

C = f. + s i fn sin (rs,/a), t=O,r<a 
I,- I 

c, = cv, f=O (6) 
according to equation (3). Parameters f,, and J, do 
not depend on the radial distance r. Let the volume 
of the solution be V, and the corresponding ratio of 
the volume of the solution to the volume of the droplet 
be u,. 

The analytical solution of equation (1) with the 
above initial values can be obtained applying the 
Laplace transform and expanding the transformed 
solution in partial fractions in order to carry out 
the inverse transformation. Generally, this solution 
would depend both on CL (by means of the parameter 
J,) and on CX,, the actual ratio of the solution volume 
and the droplet. However, assuming that the volume 
ratios have the same values (c(, = c(), the solution 
for the concentration profile becomes significantly 
simpler to use. The consequences of this assumption 
will be discussed in the next section. 

We obtain for the concentration profile within the 
droplet (see Appendix) 

M 
‘=4na3 

__ + v, 
3 

2 Me @+llfo 

+5 
( V, u > 

+A 
“= I 

: ( 

3(u+l) ocs,’ - + 3 
> 

sins, 
U 

xexp(*) sin (T) (7) 
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where M is the total mass of the solute. 
When I + zi 

A4 
C+ 

47ra’ 
3 + v, 

and when j0 + 0 and j;, + 0, the above equation 
reduces to the form of equation (3) as it is required. 
The series no doubt always converges [ 161. However, 
the rapidity of convergence varies markedly with the 
parameter s,fD,t/a’. For low values of this parameter, 
the alternative solution by means of the error function 
(erf) is given by Paterson [I61 corresponding to 
expression (3). 

MODEL 

Coupling qj’ composition prqfile with mass flu.\-es and 
estimation qfsurjbce mole fractions 

The quasi-steady evaporation (or condensation) 
rate of the droplet can be calculated according to the 
equation 

where I, and I2 are the gas-phase mass fluxes and mi i 
and ml1 are the masses of species in the droplet. The 
minus sign comes from the sign convection (the mass 
flux is positive for an evaporating species). 

We have carried out the integration of the evapor- 
ation time using extended trapezoidal rule (e.g. ref. 
[l8]) by means of summing up changes in time (time 
intervals) as a function of changes in the mass of 
species I 

m,,,i+L -n~,,.~ = dnri,,i = mi,,(di- I) (9) 

where di is the relative change in the mass I after time 
I~. For the evaporating species, it is below unity. The 
change of the mass of species 2 dm,2 is connected with 
the change of the mass of species 1 by 

dnr,2 = 2 dm, , 
‘I 

Unsophisticated as the extended trapezoidal rule is, it 
is in fact a fairly robust way of doing integrals of 
functions that are not very smooth [ 181. 

The relative changes d, in the mass 1 are determined 
by means of the volume ratio c( (the ratio ofthe volume 
of the well-stirred solution and the droplet) so that 
the volume ratio is constant (i.e. CI, = tl) all the time. 
The well-stirred solution on the droplet surface is 
produced by steady evaporation and condensation 
rates during each time interval. 

In the following it is described step by step how the 
coupling of the unsteady concentration distributions 
with quasi-stationary mass fluxes has been modelled. 
It is assumed that species 1 is evaporating. 

Phase I. Consider the droplet after time I,, when 
its radius is a, and the concentration of species 2 
inside the droplet is given by Cz(t,,a,). The concen- 
tration increases toward the droplet surface, because 
the species 2 is the condensing or less volatile sub- 
stance. 

Phase II. Because of evaporation during a small 
time interval, the droplet radius changes to a’, 
but otherwise the concentration profile is assumed 
to remain the same. Phases I and II are shown 
schematically in Fig. 2(a). Note that in this stage the 
masses do not obviously conserve. However, the com- 
puter model keeps count of the exact amounts of the 
masses otherwise, and the part of the model described 
here represents only the approximate behaviour ofthc 
intrinsic concentration profiles. 

Phase III. During the time interval, the liquid film 
of pure species 2 with the mass m,-,,,+dm,,,, is pro- 
duced by evaporation of species I and by evaporation 
or condensation of species 2. The contribution /17r2,c 

resulting from evaporation of species I is assumed to 
bc the mass which corresponds to the change of the 
mass of species I ; i.e. 

where x,.,, is the mass fraction of species I at the 
droplet surface after the time t,. Taking into account 
also the contribution dm,X,i resulting from evaporation 
or condensation of species 2, we can write for tl the 
expression 

PlNw2., +md CL= 

where P,,~ is the overall density of the droplet and pi1 
the density of the species 2 in liquid phase. 

Phase IV, The concentration is allowed to change 
according to equation (7) during the time interval 
ti+ I --I,. The roots of equation (4) are calculated by 
NAG-library FORTRAN-routine COSAZF [ 191. 
Those terms which contribute less than 0.0 I % to the 
series are omitted. Phases III and IV are shown 
schematically in Fig. 2(b). 

Phase V. Finally, the concentration profile is 
assumed to extend to the droplet surface and the 
procedure can be carried out again, Fig. 2(c). In 
this stage the masses do not conserve as before in 
phase II. 

The relative changes d, in the mass I are determined 
now so that the ratio of the film volume to the droplet 
volume remains constant. Using equations (9)-( l2), 
we obtain 

d,=l+ 
wIzh,IJ+m12.i) 

(13) 
EPl2 m, ,.ip,.i I + 5! - 1 + ~ 

1l.i XI.., Pl.i X la.t 1. 

Because the absolute accuracy of the numerical 
integration method used remains unknowable, the 
effect of the value of the volume ratio c( on the value 
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of the evaporation time has to be studied. The relative 
change in the evaporation time I,, is typically of the 
order of I or O.l%, when the value of the volume 
ratio LY changes from 0.01 to 0.001 or from 0.001 to 
0.0001, respectively. In this study we use the order of 
0.001, which gives for d, the order of 0.99 during the 
greatest part of the droplet evolution. Note that the 
smaller value of the volume ratio corresponds to the 
smaller value of the mass change and further to a 
larger amount of time intervals. However, the larger 
amount of the time intervals does not always imply 
higher accuracy in the integration, because accumu- 
lated roundoff errors may start increasing. 

Finally, the mole fractions at the droplet surface 
can be estimated by means of the concentration profile 
7. The ratio of the surface concentration C’? to the 

concentfotion 

C,(ti ,O i) .’ 
/i 

concentration at the well-mixed limit C,(D, -+ cu) is 
equal to the ratio of the surface mole fraction to the 
mole fraction at the well-mixed limit. Thus the mole 
fraction at the droplet surface is 

where 

The mole fraction of species I can be calculated by 

0; distance 

phose I 

concentration 

~ 

C,(ti ~0’) 

0' 
b 

distance 

phose II 

FIG. 2(a). The model for the coupling of the unsteady concentration distributions with quasi-stationary 
mass fluxes, phases I and II. 

concentration pure species 2 

0 distance 

phose III 

concentration 

well-mixed film 

: : 
: : 
: : 
: : 

C,O;+ I .a’) 
: : 

;-- 

: : 
: : 
: 
: : 
: : 
: : 
: : 
: : 
: . 
: : 

0’ - distance 

phase IV 

FIG. 2(b). The model for the coupling of the unsteady concentration distributions with quasi-stationary 
mass fluxes, phases III and IV. 
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concentration 

C,(ti+ 1.0 i+l) 

I 
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FIG. 2(c). The model for the coupling of the unsteady con- 
centration distributions with quasi-stationary mass fluxes, 

phase V. 

RESULTS 

The euolutiotl qf un unmonia-water droplet 
The model has been applied to predict the evolution 

of an ammonia-water droplet in humid air. The effect 
of the internal diffusion on the rate of evaporation of 
an ammonia droplet is examined. In particular, the 
evolution of the droplet temperature and the vapour 
pressure of ammonia just above the droplet surface is 
investigated. 

Figure 3 shows the sensitivity of the evaporation 
rate of an initially pure ammonia droplet to the liquid 
phase diffusion coefficient. The coefficient has values 
0.5 x IO- 9, 10m9 and 5x 10d9 m* s-‘. Diffusion 
coefficients for most of the common organic and inor- 
ganic materials in the usual solvents, such as water, 

lie in the range from 0.3 to I.5 x 10e9 m-’ s- ’ [20]. 
The rate has also been calculated at the rapid mixing 
limit using an ‘infinite’ diffusion coefficient. The gas 
temperature is 20°C and the vapour pressure of 

FIG. 4. The effect of the internal diffusion on the mole 
fraction of ammonia at the droplet surface. Finite liquid 
phase diffusion coefficient is lO-9 m2 s-‘. The initial droplet 
radius. the gas temperature and the vapour pressure of 

ammonia and water in the gas are the same as in Fig. 3. 

ammonia in the gas is negligible. The relative humidity 
is 100%. The evaporation rate of the droplet is slightly 
decreased with decreasing liquid phase diffusion 
coefficient due to the dilution of ammonia at the drop- 
let surface. After the time of 1.2 s, about 10% from 
the initial mass of ammonia is left in the droplet. 

Figure 4 shows the mole fraction of ammonia at 
the droplet surface as a function of time. Liquid phase 
diffusion coefficient has the value 10e9 rn’ s- ‘. The 
result calculated using this value can be compared 
with the result calculated using the rapid mixing 
model. The mole fraction given by the rapid mixing 
model is significantly higher. However, the effect of 
the dilution on the evaporation rate is not as sig- 
nificant according to Fig. 3. 

Figure 5 shows the droplet temperature vs time. In 
every instant, the temperature (or the evaporation and 
condensation rates) has levelled off at a value where 
the phase transition heats can be transferred in the 
gas. Smaller evaporation rate due to the dilution tends 
to raise the droplet temperature, and therefore the 
saturation vapour pressure of ammonia at the droplet 
surface tends to increase. The effect of the dilution on 
the evaporation rate is reduced because of increased 

80 - 

‘;i‘ : 
s 60- 

v) - 
3 

rapd mixing and 
0 40- 0, = 5. 10-g d/s 
cz indistinguishable 

. .-..-. 20 - o,= m2,s 10-9 

--- o,= 0.5 10-9 d/s 

ot,“l”‘l”““““‘l”‘l 
0 0.2 0.4 0.6 0.8 1 1.2 

Time (s) 

FIG. 3. The effect of the liquid phase diffusivity on the rate 
of evaporation of a freely falling, initially pure ammonia 
droplet. The gas temperature is 20°C and the vapour pressure 
of ammonia in the gas is negligible. The relative humidity is 

100%. 

Time (s) 

FIG. 5. The effect of the internal diffusion on the droplet 
temperature. Finite liquid phase diffusion coefficient is lO-9 
mz s- ‘. The initial droplet radius, the gas temperature and 
the vapour pressure of ammonia and water in the gas are the 

same as in Fig. 3. 
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0.6 - - rapid mixing 

. . . D,= 10-Q 

0”“‘. “““““I ” ” ” 1 
0 0.2 0.4 0.6 0.8 1 1.2 

Time (s) 

FIG. 6. The effect of the internal diffusion on the activity of 
ammonia at the droplet surface, on the saturation vapour 
pressure of pure ammonia at the droplet temperature and 
on the vapour pressure of ammonia just above the droplet 
surface. Finite liquid phase diffusion coefficient is 10e9 mz 
s- ‘. The initial droplet radius. the gas temperature and the 
vapour pressure of ammonia and water in the gas are the 

same as in Fig. 3. 

droplet temperature. Note that the droplet tem- 
perature is so low that the saturation vapour pressure 
of water is approximately zero, and thus the dilution 
has no significant direct effect on the mass flux of 
water vapour. 

The vapour pressure of ammonia just above the 
droplet surface is given as a product of the liquid 
phase activity (the product of the liquid phase mole 
fraction and the activity coefficient) and the pure satu- 
ration vapour pressure (e.g. ref. [6]). The activity gives 
an indication of how ‘active’ a substance is relative to 
its pure saturation vapour pressure. Figure 6 shows 
the above quantities as a function of time. The pres- 
sures are given as fractions of atmospheric pressure. 
Note that the saturation vapour pressure increases 
exponentially with temperature. The liquid phase 
activity may be four times larger at the rapid mixing 
limit than with the value IO-’ m* s- ‘. However, the 
combined effect of the increased droplet temperature 
and the dilution on the vapour pressure is small, which 
is consistent with the results presented in Fig. 3. 

Finally, Fig. 7 shows the internal mole fraction 

P - t 1.2 s I 
L 0.2 
aJ 

E 

D,= lo-’ my/s 

z 

5 LJ”.‘.‘, 0 ““‘.‘I ” 1 
0 20 Rodiofodistanc6eo 80 100 

(urn) 

FIG. 7. The mole fraction of ammonia within the droplet as 
a function of the radial distance after 0.3, 0.6,O.g and 1.2 s. 
Liauid Dhase diffusion coefficient is 10e9 mz s- ‘. The initial 
droplet-radius, the gas temperature and the vapour pressure 
of ammonia and water in the gas are the same as in Fig. 3. 

profile of ammonia as a function of the radial distance 
after 0.3,0.6.0.9 and 1.2 s. The profile has not enough 
time to become flat. However, the mole fraction of 
ammonia in the droplet centre decreases substantially. 
We can say that the liquid phase diffusion proceeds 
on the same time scale as the evaporation process. 
This is consistent with the simple analysis by means 
of the characteristic time it takes for the dissolved 
species to diffuse throughout the entire droplet, since 
this time is of the same order of magnitude as the 
characteristic time for the droplet growth or evap- 
oration [21]. 

DISCUSSION AND CONCLUSIONS 

The effect of the internal diffusion on the evap- 
oration of an ammonia droplet in humid air was inves- 
tigated and the main objective has been to clarify the 
significance of the internal diffusion in the droplet 
evaporation or condensation. The evaluation of the 
mole fractions at the droplet surface is based on the 
model where a thin, well-stirred liquid film is allowed 
to mix with the droplet by diffusion during short time 
intervals. This liquid film results from the quasi-steady 
evaporation and condensation processes. Somewhat 
simplified as this model is, it does not mask the nature 
of the physical processes involved in the droplet evol- 
ution. In ref. [13], the model predictions were com- 
pared with the numerical calculations, by Landis and 
Mills [2], for the evaporation of a heptane-octane 
droplet with the steady-state heat transfer. The 
obtained droplet behaviours were consistent. 

According to the model calculations, the evapor- 
ation rate of ammonia decreases with decreasing 
liquid phase diffusion coefficient resulting from the 
dilution of ammonia at the droplet surface. However, 
if the typical value lo-’ m* SC’ for the diffusion 
coefficient is employed, the difference between the 
evaporation rates is small compared with the rapid 
mixing limit (infinite diffusion coefficient). The effect 
of the significant surface dilution is reduced because 
of the increased droplet temperature which results 
from the decreased evaporation rate. Although the 
real situations (finite and infinite diffusion coefficients) 
differ substantially from each other, the effects of 
dilution and temperature changes quite strongly com- 
pensate each other. This point has not been stressed 
in the literature. Note that this sort of ‘negative feed- 
back’ effect is not due to the applied internal diffusion 
model, but is associated with the inherent physics of 
the processes. This conclusion indicates the need for 
measuring the surface properties of an evaporating 
multicomponent droplet, a fact that is also emphas- 
ized in the recent investigation by Aggarwal et al. [4]. 

Finally, it is useful to estimate the characteristic 
times associated with internal diffusion and droplet 
growth or evaporation. According to both simple 
analysis and numerical simulations, the ratio of the 
characteristic times for the droplet evaporation and 
for the internal diffusion is constant for all droplet 
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sizes in the continuum regime. Thus the qualitatively 
similar results presented in this study are obtained for 
all droplet sizes in the continuum regime if the species 
and the external conditions (temperature and partial 
vapour pressures) do not change. If  the evaporation 
and condensation proceed at a relatively slower rate 
and the internal diffusion at the same rate, the 
diffusion has smaller effect, and the assumption of the 
well-mixed droplet is justified. 
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APPENDIX. SOLUTION FOR INTERNAL 
CONCENTRATION PROFILE 

The definitions of the symbols used most frequently are 
given in the Nomenclature. 

Consider a spherically symmetric diffusion equation 

arc azrc 
~=DIF, r<a 

c= c,, 

with the initial values 

r=a (Al) 

C = f. + z ni h sin (rs,,/a), r=O,r<a 
-I 

c, = C”, r=O (A’4 
where s, is the nth positive non-zero root of 

scats= I+* 
3 (A3) 

where a is the constant parameter. 
For convenience, we define the following dimensionless 

variables : 

r DI rC cs 
a ’ a2 - 

r, -zu --Id*. 
aC, ’ C, 

(A4) 

Then the previous equations (A I) and (A2) are 

au ah 

aT aR2 

u = u,, R= I 

u-f$ I fLsi;(Rs.), r=O 
” n= I Y 

us = I, 5 = 0. (A5) 
Applying the Laplace transform 

U(P) = 
s 

m 
exp (- Pr)u(r) dr 646) 

0 

these equations transform into 

aw _ = -s2u (f f  Lsinc(Rsn) 
aR2 

(A7) 
Y n= I ” 

where for convenience -s* = P. The solution of this equa- 
tion is easily found to be 

(i=Asin(Rr)-g+ 1 = Bnfi s; (Rsn) (A8) 
Y n- I Y 

where A and B, are constants of integration. 
By substituting this for equation (A7) the constants B. are 

found to be 
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I 
4, = 7 -s-+s” (A9) 

” 

The constant A can be determined using the equation for the 
total mass of solute 

” 
M= 

s 
4nr’Cdr+ V,C,. (AlO) 

” 

Applying the Laplace transform and using definitions (A4) 
this is transformed to 

M 

s’4np)C,=- 0 s 

’ RudR- a,WR = 1) 
3 (All) 

where the parameter a, is the ratio of the volume of the 
solution and the droplet 

VS 
C(=4na’/3. 

(A12) 

By substituting the general solution (A8) for the above 
equation and using the relationships (A3) and (A9). the 
integration constant A is found to be 

A= 
3C” 47m’C” 

u,.s’ sins 
sins-.rcoss+p 

3 > 

+f 
J;,(GL-u,)s2 sins, 

“=I 3C,(s’-si) 
( 

a T’ sin s 
sins-scoss++ 

> 

(A13) 

In order to carry out the inverse transformation, we 
expand the solution (equation (A8) with integration con- 
stants (A9) and (A13)) in partial fractions. If any function 
g(P)/G(P) has a simple pole at zero (i.e. at the limit P + 0 
the function P(g(P)/G(P)) has a non-zero, finite value), it 
can be expanded in the form [22] 

g(P) -= G(P) 

& (Al4) 
” 

where the constants P,, are the simple, non-zero poles of 
g(P)/G(P). This formula is known as Heaviside’s expansion 
theorem. To avoid the tedious second term (the infinite 
series) in the expression (Al3), we assume that the volume 
ratio parameters have the same values (u, = G(). 

Now the first term in equation (A8) has a simple pole at 
zero in respect to variable P, and according to equations 
(A3) and (Al4) the solution can be written in the form 

“=~~~v,)c” f+i, 

2(pq9 I I (,(.;I) I $.,r”+.L 

Note that s, is only the positive root of equation (A3) 
although there are also negative roots. We have had to omit 
the negative roots because the solution was expanded in 
respect to P and both positive and negative roots correspond 
to the same value of P, (-3’ = p). 

The inverse transformation can be easily carried out using 
a transformation table (e.g. ref. [22]). Noting the definitions 
(A4) the final concentration profile is 

M c=4Ra’+ If 
T+-V‘ lx=’ 

* ~-(a:fl)h 
( V, a > 

( 

3(a+l) a$ 
~ + T sins, 

a > 

- xexp(+) sin (T)Y (A16) 


